3.4.7 \(\int (g x)^m (d+e x)^2 (d^2-e^2 x^2)^p \, dx\) [307]

Optimal. Leaf size=206 \[ -\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac {2 d^2 (2+m+p) (g x)^{1+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1+m}{2},-p;\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )}{g (1+m) (3+m+2 p)}+\frac {2 d e (g x)^{2+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {2+m}{2},-p;\frac {4+m}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (2+m)} \]

[Out]

-(g*x)^(1+m)*(-e^2*x^2+d^2)^(1+p)/g/(3+m+2*p)+2*d^2*(2+m+p)*(g*x)^(1+m)*(-e^2*x^2+d^2)^p*hypergeom([-p, 1/2+1/
2*m],[3/2+1/2*m],e^2*x^2/d^2)/g/(1+m)/(3+m+2*p)/((1-e^2*x^2/d^2)^p)+2*d*e*(g*x)^(2+m)*(-e^2*x^2+d^2)^p*hyperge
om([-p, 1+1/2*m],[2+1/2*m],e^2*x^2/d^2)/g^2/(2+m)/((1-e^2*x^2/d^2)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 206, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {1823, 822, 372, 371} \begin {gather*} \frac {2 d e (g x)^{m+2} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {m+2}{2},-p;\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (m+2)}+\frac {2 d^2 (m+p+2) (g x)^{m+1} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {m+1}{2},-p;\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )}{g (m+1) (m+2 p+3)}-\frac {(g x)^{m+1} \left (d^2-e^2 x^2\right )^{p+1}}{g (m+2 p+3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

-(((g*x)^(1 + m)*(d^2 - e^2*x^2)^(1 + p))/(g*(3 + m + 2*p))) + (2*d^2*(2 + m + p)*(g*x)^(1 + m)*(d^2 - e^2*x^2
)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m)*(3 + m + 2*p)*(1 - (e^2*x^2)/d^2)^p
) + (2*d*e*(g*x)^(2 + m)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, (e^2*x^2)/d^2])/(g^2*(2
 + m)*(1 - (e^2*x^2)/d^2)^p)

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 822

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 1823

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rubi steps

\begin {align*} \int (g x)^m (d+e x)^2 \left (d^2-e^2 x^2\right )^p \, dx &=-\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}-\frac {\int (g x)^m \left (-2 d^2 e^2 (2+m+p)-2 d e^3 (3+m+2 p) x\right ) \left (d^2-e^2 x^2\right )^p \, dx}{e^2 (3+m+2 p)}\\ &=-\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac {(2 d e) \int (g x)^{1+m} \left (d^2-e^2 x^2\right )^p \, dx}{g}+\frac {\left (2 d^2 (2+m+p)\right ) \int (g x)^m \left (d^2-e^2 x^2\right )^p \, dx}{3+m+2 p}\\ &=-\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac {\left (2 d e \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int (g x)^{1+m} \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx}{g}+\frac {\left (2 d^2 (2+m+p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int (g x)^m \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx}{3+m+2 p}\\ &=-\frac {(g x)^{1+m} \left (d^2-e^2 x^2\right )^{1+p}}{g (3+m+2 p)}+\frac {2 d^2 (2+m+p) (g x)^{1+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1+m}{2},-p;\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )}{g (1+m) (3+m+2 p)}+\frac {2 d e (g x)^{2+m} \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {2+m}{2},-p;\frac {4+m}{2};\frac {e^2 x^2}{d^2}\right )}{g^2 (2+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 169, normalized size = 0.82 \begin {gather*} \frac {x (g x)^m \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (d^2 \left (6+5 m+m^2\right ) \, _2F_1\left (\frac {1+m}{2},-p;\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )+e (1+m) x \left (2 d (3+m) \, _2F_1\left (\frac {2+m}{2},-p;\frac {4+m}{2};\frac {e^2 x^2}{d^2}\right )+e (2+m) x \, _2F_1\left (\frac {3+m}{2},-p;\frac {5+m}{2};\frac {e^2 x^2}{d^2}\right )\right )\right )}{(1+m) (2+m) (3+m)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(g*x)^m*(d + e*x)^2*(d^2 - e^2*x^2)^p,x]

[Out]

(x*(g*x)^m*(d^2 - e^2*x^2)^p*(d^2*(6 + 5*m + m^2)*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, (e^2*x^2)/d^2] +
 e*(1 + m)*x*(2*d*(3 + m)*Hypergeometric2F1[(2 + m)/2, -p, (4 + m)/2, (e^2*x^2)/d^2] + e*(2 + m)*x*Hypergeomet
ric2F1[(3 + m)/2, -p, (5 + m)/2, (e^2*x^2)/d^2])))/((1 + m)*(2 + m)*(3 + m)*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \left (g x \right )^{m} \left (e x +d \right )^{2} \left (-e^{2} x^{2}+d^{2}\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

[Out]

int((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((x*e + d)^2*(-x^2*e^2 + d^2)^p*(g*x)^m, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((x^2*e^2 + 2*d*x*e + d^2)*(-x^2*e^2 + d^2)^p*(g*x)^m, x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 7.16, size = 192, normalized size = 0.93 \begin {gather*} \frac {d^{2} d^{2 p} g^{m} x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + \frac {d d^{2 p} e g^{m} x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{\Gamma \left (\frac {m}{2} + 2\right )} + \frac {d^{2 p} e^{2} g^{m} x^{3} x^{m} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, \frac {m}{2} + \frac {3}{2} \\ \frac {m}{2} + \frac {5}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {m}{2} + \frac {5}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)**2*(-e**2*x**2+d**2)**p,x)

[Out]

d**2*d**(2*p)*g**m*x*x**m*gamma(m/2 + 1/2)*hyper((-p, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d*
*2)/(2*gamma(m/2 + 3/2)) + d*d**(2*p)*e*g**m*x**2*x**m*gamma(m/2 + 1)*hyper((-p, m/2 + 1), (m/2 + 2,), e**2*x*
*2*exp_polar(2*I*pi)/d**2)/gamma(m/2 + 2) + d**(2*p)*e**2*g**m*x**3*x**m*gamma(m/2 + 3/2)*hyper((-p, m/2 + 3/2
), (m/2 + 5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*gamma(m/2 + 5/2))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)^2*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((x*e + d)^2*(-x^2*e^2 + d^2)^p*(g*x)^m, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (d^2-e^2\,x^2\right )}^p\,{\left (g\,x\right )}^m\,{\left (d+e\,x\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d^2 - e^2*x^2)^p*(g*x)^m*(d + e*x)^2,x)

[Out]

int((d^2 - e^2*x^2)^p*(g*x)^m*(d + e*x)^2, x)

________________________________________________________________________________________